HEALTH COMPLAINTS AFTER MOVING INTO A NEW OFFICE BUILDING: RESULTS OF MEASUREMENTS AND INVESTIGATIONS OF EMPLOYEES

H-P Hutter1*, H Moshammer1, P Wallner1, B Damberger2, P Tappler2,3 and M Kundi1

1Department of Occupational and Social Hygiene, Institute of Environmental Health, University of Vienna, Austria
2Austrian Institute for Ecological Buildings, Austria
3Center for Architecture, Construction and Environment, Danube University Krems, Austria

ABSTRACT
After moving into a new office building, employees complained about irritation of eyes, sore throat and unspecific symptoms. A working group was appointed to investigate indoor air pollution.

Air samples and floor dust samples for the analysis of organic compounds were collected in office rooms. Within eight months, several measurement campaigns were conducted to assess the trends of the concentrations of air pollutants. A questionnaire was administered concerning complaints before and after moving into the new office building, as well as about environmental conditions at the work place.

Overall the concentrations of VOC and formaldehyde were fairly low. High concentrations (2900 to 7800 mg/kg) of tris-(2-butoxyethyl)-phosphate (TBEP) and phthalates (diethylhexylphthalate: 770 to 4100 mg/kg) were found in dust samples. The coating of the rubber floor was identified as the source of TBEP.

Results of the questionnaire demonstrated an increased irritation of the mucous membranes and a reduction of well-being after the employees had moved into the new building. There was an association between these complaints and room climate, but not with the visible dust load.

After removal of the coating of the rubber floor throughout the whole building, a reduction up to 90 percent of TBEP in the dust samples was found. In spite of several attempts, no such marked reduction was achieved with the concentration of phthalates.

INDEX TERMS
Building related symptoms, Dust, Questionnaire, TBEP

INTRODUCTION
After the construction of a new office building the employees of a large hospital moved in successively during a period of several months. Although employees participated in the selection of furniture and equipment, and despite improvements concerning comfort and space, soon after moving in complaints were reported to the occupational physician and workers’ council.

* Contact author email: hans-peter.hutter@univie.ac.at
These reports contained complaints about dust, bad smells, room climate, and health problems. There were observations of a white powdery dust that stuck onto shoes, garments and furniture, and that continued to occur despite daily wet cleaning. Health complaints were in particular the irritation of eyes, nose and throat.

In order to clarify this issue, air and dust samples were taken. However, the management refrained from informing employees about the results of the measurements, which contributed to a deterioration of social climate and led to suspicion and mistrust that initially hampered the assessment of the problem and endeavors to its solution.

In a coordinated and cooperative initiative that included delegates of the employees, workers’ council, management, occupational and environmental health specialists and measurement technicians, suggestions for a solution were developed based on additional measurements and investigations.

PROCEDURES AND METHODS
1. Measurements of indoor air pollutants
Air levels of VOC and formaldehyde were tested in 3 different rooms, where dust samples were also taken, in the morning.

VOC air samples were taken by using adsorption tubes containing a special activated charcoal (SKC, Anasorb 747). Sample flow rates were about 2 liters per minute. VOCs were extracted from activated carbon with 1 milliliter of CS\textsubscript{2} and analyzed by gas chromatography/mass spectrometry (Shimadzu QP 5000), using a 60 meter fused silica capillary column (HP-VOC) following the Austrian Standard ÖNORM M 5700 - 2, proposal (Austrian Standard Institute, 2002). Fifty target VOCs were selected for analysis. As internal standards cyclooctane and toluene-d\textsubscript{8} were used.

Formaldehyde was measured using active air sampling in accordance with the German Standard VDI 4300 part 3 E (VDI, 1997). Analyses were subsequently performed by using the acetylacetone photometric method following the Austrian Standard ÖNORM EN 717 - 1 (Austrian Standard Institute, 1995).

2. Analysis of house dust
House dust samples were taken after one week sedimentation without wet and vacuum cleaning. Samples were collected by using a vacuum cleaner with an inserted particle filter. House dust samples were tested four times as a mixed sample of three rooms during a period of 8 months. These rooms were selected due to the health complaints of employees working in them. Samples from five other rooms where no complaints were reported were tested as reference.

Samples were tested for semivolatile to nonvolatile organic compounds. Among the substances tested were 55 biocides including PCP/Lindan and pyrethroids, PAHs, polychlorinated biphenyls, phthalates and trisphosphates.

Samples were extracted using n-hexane and a preliminary purification step (silicagel, SPE). Aliquots of the extract were analyzed by capillary gas chromatography with an electron-capture-detector/flame-ionization-detector (GC/ECD/FID). α-HCH and 2,4,6-tribromophenol served as internal standards for quantification.
3. Assessment of sources of exposure
Specimen of wall-papers, extended ceiling, curtains, rubber floor tiles and coating were taken and checked for same substances found in house dust samples.

4. Visual inspection
Initially the building, including the ventilation system, was scrutinized by a team consisting of occupational and environmental medicine experts and technicians. During this inspection the rooms where measurements should take place were chosen.

Additionally, personal interviews with employees working in different parts of the building were conducted to examine the general pattern of complaints. This information was used to design a questionnaire that was to be delivered to all employees.

5. Questionnaire
The questionnaire consisted of three parts: Items about the environmental conditions in the room the subject occupied, questions about symptoms (respiratory and unspecific ones like headaches, fatigue etc.) before and after moving in, spells of illness during this period, and earlier chronic diseases (allergies and asthma), the third part was about proposals and suggestions for improving working and environmental conditions. Additionally, socio-demographic data were collected.

6. Statistical analysis
Comparison of the symptoms before and after moving in were done by sign tests and McNemar tests. To determine the contribution of the evaluation of environmental factors by employees to the symptoms after moving in, and for the change in these reported symptoms a score was computed for all respiratory symptoms as well as for unspecific symptoms. This score was area transformed to obtain normal distribution. Scores were subjected to regression analyses with room temperature, humidity, draught, visible dust, bad smells, environmental tobacco smoke and sex and age as predictors. For all statistical tests a p-value below 0.05 was considered significant.

RESULTS
1. Indoor air pollutants and dust samples
Formaldehyde levels were 0.046, 0.047 and 0.051 ppm in the three rooms selected initially. Hence all three samples were around 0.05 ppm, the WHO (1983) level of no concern. Total VOC levels ranged from 360 to 740 micrograms/m³. VOC-levels were within interquartile range of those in a random sample of Viennese households (Hutter et al., 2002).

In dust samples initially high levels of tris-(2-butoxyethyl)-phosphate (TBEP) of 2900 to 7800 mg/kg were detected. The coating of the floor tiles was identified as the source of TBEP. Furthermore, in areas of heavy use, floor coating caused visible and atypically high amounts of dust. After removing the coating, dust concentration of TBEP was reduced to an average of 410 mg/kg and after another three months to 90 mg/kg.

Dietylhexylphtalat (DEHP) has also been identified in considerable amounts of 770 to 4100 mg/kg. DEHP was identified in PVC material used for floor ledges. Despite removal of this material, dust concentration of DEHP declined only slightly.
2. Questionnaire
Overall 65 subjects returned the questionnaire (63% of employees in the new building). Distribution of respondents did not deviate considerably concerning age, sex and occupational categories from the total work force.

Upper and lower respiratory tract diseases did not increase significantly after moving into the new building. However, symptoms of irritation (sore throat, burning eyes, dry nose) as well as unspecific symptoms (tiredness, exhaustion, headaches, decreased alertness) showed marked and significant increases.

Room climate was rated uncomfortable by approximately half of the employees concerning humidity and air velocity, and by about 20% concerning air temperature. Air quality was described as stale and odors as annoying. More than half of the employees rated visible dust as a nuisance.

Regression analysis revealed a significant influence of humidity and a tendency for smoking in office rooms on the increase of respiratory symptoms. No influence of visible dust and only a slight tendency for bad smells on increase in unspecific symptoms was noted.

DISCUSSION
Overall the concentrations of total VOC and formaldehyde were fairly low. The highest values of formaldehyde were of about 0.05 ppm (WHO level of no concern).

Organophosphate esters are frequently applied as a flame retardant in building products and other materials for indoor use. Exposure of residents to flame retardant mainly results from the accumulation in house dust and indoor air. TBEP concentration was rather high (Hansen et al., 2000, Federal Environmental Agency, 2002) but could be reduced significantly by removing the floor coating.

In a German survey (1998) house dust specimens were also analyzed for phthalates. Diethylhexylphthalat had a median concentration of 416 mg/kg and a 90 percentile of 978 mg/kg, maximum was 7530 mg/kg. Concentrations measured in our study in the dust of offices were in the upper range of the distribution obtained in households (770 to 4100 mg/kg). Although one source of phthalates has been detected and removed, concentration did not decline significantly. This points to the broad range of usage of phthalates in the office environment.

CONCLUSIONS AND IMPLICATIONS
The unusually high TBEP-values that were found show that more attention should be dedicated to the sealing of the floor, particularly those in constant use.

Fine particles that are not visible are probably scattered around the entire house, their concentration could not be obtained throughout this measuring campaign. Therefore, it cannot be excluded that an explicit increase in ailments is linked to the concentration of TBEP-containing dust.

Although there was no significant association between the increase of complaints after moving in and visible dust exposure - making an attribution effect unlikely - it cannot be ruled out that fine particles together with unfavorable indoor factors (unpleasant odor, high temperature, dry air) are responsible for the development of the complaints.
Due to the high complexity of the connection between the exposure and the ailments, a measuring process regarding the early involvement of those concerned has to be organized. According to our experience we emphasize the importance of thorough information concerning the employees about the planned interventions in the sense of gaining transparency through procedures.

ACKNOWLEDGEMENTS
This work was supported by the Federal Ministry of Agriculture, Forestry, Environment and Water Management. We thank Brigitte Piegler for her assistance with data collection.

REFERENCES